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Wave evolution over a gradual slope with 
turbulent friction 

By JOHN W. MILES 
Institute of Geophysics and Planetary Physics, University of California, La Jolla 92093 

(Received 11  November 1982 and in revised form 14 March 1983) 

The evolution of a weakly nonlinear, weakly dispersive gravity wave in water of depth 
d over a bottom of gradual slope S and Chezy friction coefficient Cf is studied. It is 
found that an initially sinusoidal wave evolves into a periodic sequence of solitary 
waves with relative amplitude a/d = a1 = 15S/4Cf if a, < ab, where ab is the relative 
amplitude above which breaking occurs. This prediction is supported by observations 
(Wells 1978) of the evolution of swell over mudflats. 

1. Introduction 
I consider here the evolution of a gravity wave of peak-to-trough amplitude a and 

length 1 in water of depth d over a bottom of slope 6 on the following assumptions: 
(i) weak nonlinearity ( a  4 d ) ;  (ii) weak dispersion (d 4 I); (iii) adiabatic variation 

(6 4 d/Z) ; (iv) Chezy-type bottom friction, 

( 1 . 1 )  

where r is the shear stress at the bottom, the constant Cf is Chezy’s coefficient,? p 
is the density, and u is the particle velocity just outside of the boundary layer. 
Assumptions (i)-(iii) are characterized by the chain inequality 

7 = Cf p I4 u, 

I also assume 

( 1 . 2 ~ )  

(1.2b) 

which proves to be a necessary condition for ald to remain small as d$O,  and 
provide for gradual refraction by regarding the wave as propagating in a virtual 
channel of gradually varying breadth b (Idbldxl 4 b/ l ) .  

A similar investigation, also based on (i)-(iv), has been carried out by Shuto (1977). 
The present results are more compact, are useful over a wider parametric range, and 
provide explicit asymptotic approximations that permit more direct comparison with 
observation. 

My interest in this problem was stimulated by the observations of Wells (1978) of 
wave evolution over shallow mudbanks on the coast of Surinam. Wells concluded that 
an initially sinusoidal wave (i.e. the dominant spectral component of incoming swell) 
evolves into a periodic sequence of solitary waves (cf. Munk 1949) with a cc d.  He 
suggested that this is a t  least partially a consequence of laminar friction, either in 

t The Chezy coefficient actually depends on the amplitude and period of the wave motion, but 
the range of its variation is likely to be less than the uncertainty in its mean value in the present 
context. See Knight (1978) and Jonsson (1980) for information and additional references on C, for 
oscillatory boundary layers. 
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the bottom boundary layer or in the mud, qua liquid, but both his own observations 
of the turbidity of the flow and (as I proceed to  show) the asymptotic result a K d 
suggest that the friction must be turbulent. 

The analytical investigation of wave evolution with gradually changing depth goes 
back to Green (Lamb 1932,s 185), who predicted that long waves of sufficiently small 
amplitude evolve according to 

in the absence of dissipation. Boussinesq (1872) predicted that a solitary wave evolves 
according to 

a K d-4 (1.3) 

a cc d-l .  (1.4) 

Both of these results may be inferred directly from conservation of energy on the 
assumption that dissipation and reflexion are negligible ; both fail for sufficiently 
small d. 

I) sinusoidal wave of period T may be expected to remain 
sinusoidal in water of gradually varying depth if and only if both the relative 
amplitude 

and the Ursell parameter 

A shallow-water (d 

a = a/d (1.5) 

a L  
U E -  

d2 

which is a measure of nonlinearity/dispersion,t remain small. If a does not remain 
small the wave may be expected to break; if a remains small but U does not the wave 
may be expected to evolve into a cnoidal wave and ultimately into a periodic sequence 
of solitary waves. It is evident from (1.3) and (1.4) that  neither 01 nor U remain small 
over a shoaling bottom (d $0) in the absence of dissipation. The hypothetical increase 
in amplitude due to shoaling is a t  least partially countered by friction, however, and 
wave evolution over a sufficiently gentle slope then is governed by a balance between 
the decay of wave energy and the power dissipated by bottom friction. I derive the 
corresponding energy-transport equation in Q 2 and apply i t  to sinusoidal, solitary 
and cnoidal waves in $$3-5. The results for a solitary wave ($4) have been previously 
reported (Miles 1983). 

The results for sinusoidal and solitary waves over a uniform slope, 

d = do-& (1 .7)  

(x increases in the direction of wave propagation), are algebraically simple and may 
be summarized as follows. The relative amplitude of a sinusoidal wave increases/ 
decreases monotonically (in the direction of decreasing depth) if a. 5 a,, where 
a. = a(0) and a, = 15nS/8Cf. The Ursell parameter U increases monotonically if 
a, < !a,; if a, > ia,, U initially decreases to a minimum and then increases 
monotonically to co as d / d o $ O .  The relative amplitude of a solitary wave 
increases/decreases monotonically if a. 5 al, where 

15 S 
a1 = TC,’ 

and is asymptotic to a, : 
a - a,d (dJ.0) .  

t The wavelength is 1 = cT = (dL)?, nonlinearity and dispersion are measured by a/d and d 2 / P  
respectively, and U = a12/d3 = aL/d2 .  
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The Ursell parameter for a cnoidal wave that is approximated by a sequence of 
solitary waves increases monotonically if a, < $al ; if a, > $al, U initially decreases 
to a minimum and then increases monotonically. The asymptotic result (1.9) is valid 
for any shoaling bottom for which d’(x)+ -6 as d $0 (see 54). 

These results suggest that  an initially sinusoidal wave for which a, and U, are small 
should evolve into a cnoidal wave and ultimately into a sequence of solitary waves 
with a - a, d as d $ 0 over a sloping bottom for which al < ab, where ab x 0.6-0.8 
is that  value for a for which a solitary wave breaks (for references see Miles 1980); 
this conjecture is analytically confirmed in 55. If al > a,, the wave must be expected 
to break, although i t  could evolve into a sequence of solitary waves prior to breaking. 
Typical values of C, are of the order of lop2, which suggests that  breaking will precede 
the asymptotic limit a - a, unless S is quite small (but a broken wave could reform 
and then evolve according to the present model). Wells (1978) reports a - 0.23d on 
a slope of S = 0.0005, which provides a t  least qualitative confirmation of the present 
predictions; the corresponding value of C,, inferred from (1.8), is 0.008. 

It is instructive to  inquire how the preceding results would be modified by the 
assumption of laminar, rather than turbulent, friction. I carry out the required 
calculation in the appendix and find that 

a - 4.9 x 1 0 4 ~ 4 % 4  ( ~ J o ) ,  (1.10) 
V 2  

where v is the kinematic viscosity. Wells reports values of v between 0.02 and 275 
for the Surinam mudbanks, which renders quantitative estimates from (1 . lo) 
somewhat uncertain; however, the qualitative estimate a a d4 differs so markedly 
from the observed result a a d as almost certainly to rule out laminar friction. 

2. Energy-transport equation 

varying breadth b(x )  and depth d(x ) ,  where 
Let q ( s , x )  be the free-surface displacement of a wave in a channel of gradually 

is a characteristic coordinate, 
c = ( g a p  

is the speed of an infinitesimal, shallow-water wave, and the conditions described in 
the first paragraph of 9 1 are assumed to hold. The wave energy then is pgq2 per unit 
area, the energy flux is pgq2bc, the corresponding dissipation rate owing to bottom 
friction is -rub, where T is given by ( l . l ) ,  and the particle velocity u is given by the 
shallow-water approximation (Lamb 1932, 5 169) 

u = c q / d .  (2.3) 

Averaging the energy and the dissipation rate over s on the assumption that q is 
periodic in s with period T, we obtain the energy-transport equation 

where 
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Substituting ( l . l ) ,  ( 2 . 2 )  and (2 .3 )  into (2 .4)  and dividing through by pgi, we obtain 

d 
- (bdi(r2))+C,bd-i( lr13)  dx = 0. (2 .6 )  

This last result also may be obtained by multiplying Shuto’s (1977) equation ( 6 )  
through by 2bc7 and averaging the result over 5 = s. 

If 7 is aperiodic and vanishes at  s = & oc), ( 2 . 6 )  may be replaced by 

d ( b d : r  v2ds) + C , b d - - i r  1vl3ds = 0. 
dx - W  --a, 

It should be emphasized that the spatial intervals of the integrations with respect 
to s in (2.4)-(2.7) are, by assumption, small compared with the distance over which 
b and d exhibit appreciable changes. Moreover, the sidewalls of our channel are virtual 
and are to be interpreted as projections of rays on the free surface (cf. Ostrovsky 1976; 
Miles 1977). If the sidewalls are solid and have the same roughness as the bottom, 
as in a laboratory channel, C, must be multiplied by 1 + 2d /b  in (2 .6 )  and (2 .7 ) .  

We choose 
b = constant, d = do-Sx (2 .8 )  

in the subsequent examples in order to simplify the results. The accommodation of 
other forms of b and d is straightforward. 

3. Slowly varying sinusoidal wave 

is described by the adiabatic approximation 
If both nonlinearity and dispersion are neglected, a sinusoidal wave of period T 

2as 
T 

q ( s ,  x) = &(x) cos- . (3 .1 )  

(The definition of a as the peak-to-trough amplitude is consistent with the 
corresponding definitions for the solitary and cnoidal waves in 994 and 5. )  
Substituting (3 .1 )  into ( 2 . 6 ) ,  we obtain 

d 4Cf 3 - (a2bdi) + -U bd-i = 0, 
dx 37t 

the integration of which from the reference point x = 0 with b and d given by (2 .8 )  
yields 

a = a o ( y [ l +  ( % ) p ) ( ~ y - l ) ] l  15aS do 

- a * d  (dCO), 

where a, s a(xo) and 
S 

a* = ya- .  
Cf 

Introducing the relative amplitude a = a / d ,  we obtain the alternative form 

( 3 . 3 a )  

(3 .3b )  

(3 .4 )  

(3 .5 )  
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We remark that ; a is a monotonically increasingldecreasing function of x if a, >< a, ; 
a has the maximum value 

(3.6a, b) 

if a ,  > 5a,, but is a monotonically decreasing function of x (in 0 < x < d,/6) if 
a* < 5a0. 

The results in this section are valid only if both the relative amplitude a and the 
Ursell parameter U remain small. Substituting (3.3~) into (1.6) and invoking (3.4), 
we obtain 

(3.7a) 

m- a*L (diO). (3.76) 

It follows from ( 3 . 7 ~ )  that  U is a monotonically increasing function of x if a, < %a,; 
if a, > Q*, U initially decreases to a minimum of 

d 

but then increases monotonically. It follows that the wave cannot remain sinusoidal 
even though a(x)  remains small. 

4. Slowly varying solitary wave 
The adiabatic approximation for a solitary wave is given by (Miles 1979) 

~ ( s ,  x) = a(x) sech2 [52(x) {s-a(x)]], (4.1) 
where 

a(z) = 4(3g~)? d-l ,  C ( X )  = - -- . (4.2a, 6) 
2 l Sadx d c  

Note that the introduction of a(x) in (4.1) is equivalent to the replacement of c by 

{g(d +a)>* x (gd); (1 +&) 
in (2.1). 

obtain 
Substituting (4.1) into (2.7), invoking (2.8), and carrying out the integrations, we 

(4.3) 
d -  - (afbdi) +fCf aEbd-4 = 0, 
dx 

(4.4a) 

(4 .4b)  

(4.5) 
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u= U ~ ( ~ ) ~ [ I + - J ~ - ~ ) ] - '  a0 (4.7 a)  

(4.7b) 

as the counterparts of (3 .2 ) ,  (3.3a, b), (3.5), (3.4) and (3.7a, b).  We remark that:  a 
is a monotonically increasing/decreasing function of x if a, 5 a1 ; a has the maximum 
value -1 

amax = - 1 (-) a1 - 1 )  a, at d = (2 - l)-'d, 
2 a0 

if u1 > 2a,, but is a monotonically decreasing function of x (in 0 < x < d,/S) if 
a, 6 201,; U is a monotonically increasing function of x if a,, < #al; if a, > #al, U 
initially decreases to a minimum of 

but ultimately increases monotonically. 
We infer directly from the differential equation (4 .3) ,  which is singular a t  d = 0, 

that the asymptotic result a - a, d ,  with u, given by (4.6), is valid for any shoaling 
bottom for which b+b, > 0 and d'(x)+ -8  as d J . 0 ;  see (5.18) below. It is worth 
emphasizing that C, may vary with x (owing to  variations in both depth and bottom 
roughness) and that its value near d = 0 should be used in the calculation of a,. 

The approximation of a periodic wave by a sequence of solitary waves rests on the 
assumptions that a remains small and U remains large. A rough criterion for the 
approximation of the elliptic function cn (ulm) by sech u is U 2 70, which corresponds 
to 0.99 < m < 1 ; however, the variation of U implies significant dynamical effects for 
U 5 lo3 (see below). Laboratory observations (for references see Miles 1980) suggest 
that  (4 .1)  should provide a good approximation to  a solitary wave if a 5 0.5 but that  
breaking should be expected for a > a,, z 0.6-0.8 (the experimental/theoretical 
value for breaking of a steady solitary wave is ub = 0.6-0.7/0.83). 

5. Slowly varying cnoidal wave 
The adiabat'ic approximation for a cnoidal wave of period T = (L/g)i  is given by 

(Miles 1979) 
~ ( s ,  x) = a ( x )  {cn2 (2K4m)  - (cn2)}, (5.1) 

where 
aL 
- = y m K 2  = U(m) ,  
d2 

1 2 - m - 3 ( E / K )  
T '  u =-I[ 2 m 

s - a(x) e=- 

(5 .2)  

(5.3a, b) 

cn is an elliptic cosine of slowly varying modulus m' in the notation of Abramowitz 
& Stegun (1965), K and E are complete elliptic integrals of the first and second kind, 
U is a local Ursell parameter, and ( ) now signifies an average over the period of 
the elliptic functions; in particular, 

(5.4) 

We remark that (5.1) reduces to  (3 .1) / (4 .1)  in the limit U $ O / t  00. 
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Substituting (5.1) into (2.6), we obtain 

d 
dx 
- (IU'bdj) + C, L-lJVbd! = 0, (5.5) 

where 
I = ( en4) - ( cn2)2, (5.6) 

J =  (Icnz-(cn2)13). (5.7) 

It is readily shown that (5.5) is equivalent to (3.2)/(4.3) in the limit UJO/t co. 

independent variable and 
Turning to  the uniform slope described by (2.8), we regard either m or U as the 

as the dependent variable. Combining (5.2) and (5.8) to obtain d = (156L/4Cf) (flu) 
and substituting this result, together with (2.8), into (5.5), we obtain 

(5.9) 
df ( f  -f1) = f ( f  - f z L  

where 

(5.10a, b )  

The parameters I ,  U ,  dI/dm and dU/dm may be calculated from (5.2) and (5.6) with 
the aid of formulas in Byrd & Friedman (1954) to obtain 

I =  &-2(2(2-m)d-3362-(1-m)), (5.11) 

where 

-- - m-1 ( I  - m)-ld, dln U 
dm 

4(2-m)d-7362-(1-m) 
2(2-m)d-382-(1-m) 

d = E(m)/K(m). 

(5.12) 

(5.13) 

(5.14) 

Numerical investigation reveals that  the integral J varies by only a few percent from 
1/6n (its value a t  m = 0) for 0 Q m Q 0.99 and is given by (5.17) below with an error 
of less than 1 yo for m 2 0.99. 

The limit m t  1 is logarithmically slow, in consequence of which i t  is expedient to 
neglect 1 -m except in its logarithm if 1 -m 4 1 and invoke the asymptotic 
approximations 

(5.15) 

f' - i(JK)-' (1 -3K-1 2 ), fi - h(JK)-l(l  -W1), (5.16a, b) 

16 
l -m U - yK2 - iln2- ( m t  I ) ,  

J - u i ~ - i ( i  - y ~ - i + y ~ - z )  ( 1 - ~ - ' ) ~ - - ~ - ' + 2 ~ - 2 - 2 ~ - 3  15 

-2K-41n{K~+(K-l)~}. (5.17) 

The differential equation (5.9), which is of Abel's type, has four singularities in a 
( U ,  f)-plane (it is analytically convenient to regard 1/U and f as the phase-plane 
variables near U = co ) : 

(i) a node at U = 0 and f = 0, in the neighbourhood of which f cc a, or, 

equivalently, a cc d-4 (cf. (1.3)); (ii) a saddle point a t  U = 0 and f = fi = in; (iii) a 
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FIGURE 1. ./al vs. d/d,  for (a) U ,  = 1, ( b )  U, = 10, (c) U, = 100. 

saddle point at  U = 00 and f = 0;  (iv) a node at U = co and f = f 2  = 1, in the 
neighbourhood of which f - 1 cc UP2,  or, equivalently (cf. (4.7 b ) ) ,  

a - a , d { i + 0 ( ~ - 2 ) )  = a l d { i + O ( $ ) }  ( ~ f c o ) .  (5.18) 

The integration may be carried out numerically, starting from the point f o  = a,,/al 
and U, = a, Lldi and integrating toward the node at  f = 1 and U = co to obtain a 
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dido 

FIQURE 2. Plots of In ( U l U , )  vs. d ld ,  for U, = 1. The corresponding results for U,  = 10 are 
almost coincident with, and those for U, = 100 are close to, those for U,, = 1. 

two-parameter ( fo and ?lo) family of solutions. The local depth, as determined from 
(5 .2)  and (5.8), is given by 

(5.19) 

The results are plotted in figures 1 and 2.t  We remark that, in contrast to the limiting 
results for sinusoidal and cnoidal waves (for which a either increases or decreases 
monotonically), a increases to  a peak and then decreases to  a, if a. < a,. 

This work was supported in part by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE77-24005, and by a contract with the Office of 
Naval Research. 

Appendix. Laminar friction 

be replaced by (cf. Miles 1976a) 
If the boundary layer is assumed to be laminar, rather than turbulent, (2.7) must 

where v is the kinematic viscosity. A computationally simpler form, obtained by 
introducing the Fourier transform 

W 

N ( w ,  x) = eciWsy(s, 2) ds 
- W  

t The numerical integration of (5.9) was carried out with the independent variable m and the 
approximation J = 0,05305 for 0 < m < 0.99, and with the independent variable U and the 
asymptotic approximations (5.15)-(5.17) for m > 0.99 ( U  > 72). 
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and invoking the Parseval and convolution theorems for the integrals in (A l) ,  is 

Substituting (4.1) into (A 2) and the result into (A 3), we obtain (for details cf. Miles 
19766) 

d 
- dx (atbdi) + 3Cg-4(4v)l aibd-i = 0, (A 4) 

where C = 0.2372 ..., and 

as the counterparts of (4.3) and (4.4a, b) .  It may be inferred directly from (A 4) that  
the asymptotic result (A 5 b )  holds for any shoaling bottom for which b+b, > 0 and 
d’(x)+ -8 as dJ.0.  

Sidewall and free-surface-contaminant boundary layers may be accommodated 
by introducing the factor 1 + C + 2 d / b  in the last term in each of (A l ) ,  (A 3) and 
(A 4), and in the second term within the brackets in (A 5 a ) ,  where C is a surface- 
contamination coefficient that  may be approximated by 1 for tap water. 
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